168^2+x^2=360^2

Simple and best practice solution for 168^2+x^2=360^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 168^2+x^2=360^2 equation:



168^2+x^2=360^2
We move all terms to the left:
168^2+x^2-(360^2)=0
We add all the numbers together, and all the variables
x^2-101376=0
a = 1; b = 0; c = -101376;
Δ = b2-4ac
Δ = 02-4·1·(-101376)
Δ = 405504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{405504}=\sqrt{36864*11}=\sqrt{36864}*\sqrt{11}=192\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-192\sqrt{11}}{2*1}=\frac{0-192\sqrt{11}}{2} =-\frac{192\sqrt{11}}{2} =-96\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+192\sqrt{11}}{2*1}=\frac{0+192\sqrt{11}}{2} =\frac{192\sqrt{11}}{2} =96\sqrt{11} $

See similar equations:

| 2^-125x=(0.5)^(x-5) | | 240=91+(x-5)+x | | -111=3(7x-20 | | 3.25k=k(1/4+3) | | n=(9−4) | | 2x+(8x)=110 | | 5x(2x+10)=50 | | X-5=3x+7-x | | P=28-2q | | 4^4x=11 | | 2(a-2)=3(a+5) | | 2(a-2)=3(2-5) | | -7(x+6)=-3x-18 | | 300=85x-0.5x^2-45x+300 | | n+6.2=(-15.1 | | 18.5-x=3.45 | | 2m²+9m+9=0 | | a=2-9a | | 2x+4=x−5 | | 2=-7/8+u | | 6x-27+3x=4+9–x | | 14+2x-8=8x+6-6x | | 2x*2x*2x*3x*x=540 | | 0.5+0.20(9.0-x)=3.45 | | 4(x+10)+x=10+3x+7x-20 | | -6=w+7/8 | | .13y+0.03(y+8000)=1040 | | 2(x+6)-2(4x+6)=-6 | | 2x+2(-1/2x)=5 | | 2x+-2+x+45=180 | | (2i)(7i)=0 | | 0.5x+1.8-x=3.45 |

Equations solver categories